

HIGH EFFICIENCY RECTIFIER

HER151 THRU HER158 VOLTAGE RANGE CURRENT

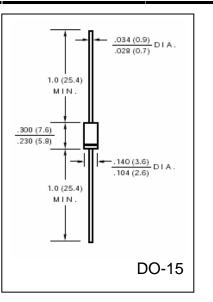
50 to 1000 Volts 1.5 Ampere

FEATURES

- Low power loss, high efficiency
- Low Leakage
- High speed switching
- High Surge Capacity
- High Temperature soldering guaranteed: 260 °C / 10 second, 0.375" (9.5mm) lead length

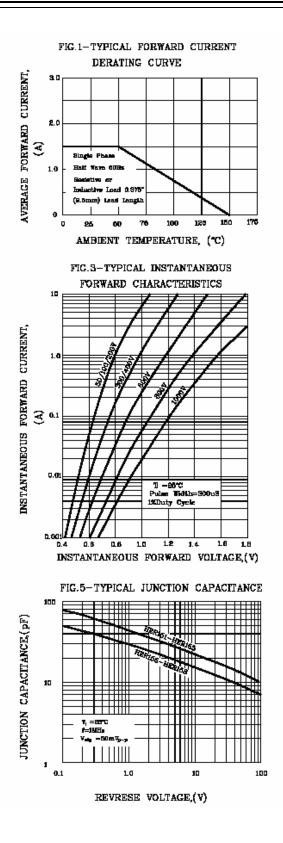
MECHANICAL DATA

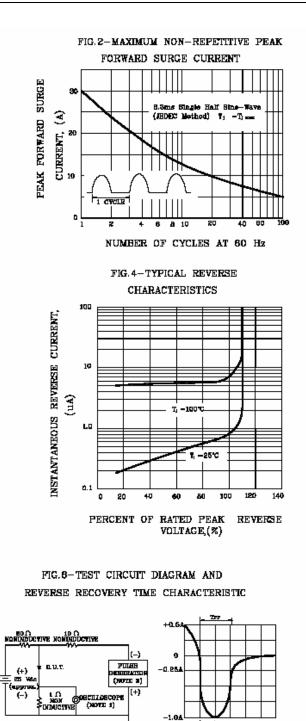
- Case: Transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant
- Polarity: Color Band denotes cathode end
- Lead: Plated axial lead, solderable per MIL STD-202E Method 208C
- Mounting Position: Any
- Weight: 0.014 ounce, 0.39 gram


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

- Ratings at 25°C ambient temperature unless otherwise specified
- Single Phase, half wave, 60Hz, resistive or inductive load
- For capacitive load derate current by 20%

	SYMBOLS	HER 151	HER 152	HER 153	HER 154	HER 155	HER 156	HER 157	HER 158	UNIT
Maximum Repetitive Peak Reverse Voltage	V _{RRM}	50	100	200	300	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	210	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	300	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 50^{\circ}C$	I _(AV)	1.5								Amps
Peak Forward Surge Current	Ŧ	20								Amps
8.3mS single half sine wave superimposed on rated load (JEDEC method)	I _{FSM}	30								
Maximum Instantaneous Forward Voltage @ 1.5A	V _F	1.0		1	.3 1.5		1.7		Volts	
Maximum DC Reverse Current at Rated $T_A = 25 \ ^{\circ}C$	Т	I _R 5.0								
DC Blocking Voltage per element $T_A = 125 \ ^{O}C$	IR	250							μA	
Maximum Full Load Reverse Current, Full Cycle average 0.375 " (9.5mm) lead length at $T_L = 55^{\circ}C$	I _{R(AV)}	100								μΑ
Maximum Reverse Recovery Time Test conditions $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$	t _{rr}	50 70						0	nS	
Typical Junction Capacitance (Measured at 1.0MHz and applied reverse voltage of 4.0V)	C_{J}	30 20						0	pF	
Typical Thermal Resistance (Note 1)	$R_{\theta JA}$	40							^o C/W	
Operating Junction Temperature Range	TJ	(-55 to +150)								°C
Storage Temperature Range	T _{STG}	(-55 to +150)								°C


Notes:


1. Thermal resistance from junction to ambient with 0.375" (9.5mm) lead length, PCB mounted

RATINGS AND CHARACTERISTIC CURVES HER151 THRU HER158

NGTER 1.Rise fints -7ns max. Input Impedance-1 magohn. S2pF 2.Rise time-10ns max. Source Impedance-5D ohns SET THE BASE FOR 60/100ms/om