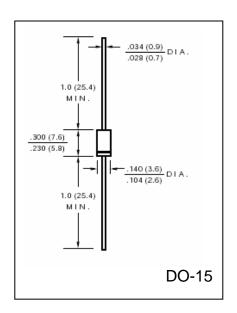


HIGH EFFICIENCY GLASS PASSIVATED RECTIFIER

HER151G THRU HER158G


VOLTAGE RANGE CURRENT 50 to 1000 Volts 1.5 Ampere

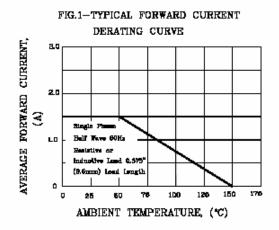
FEATURES

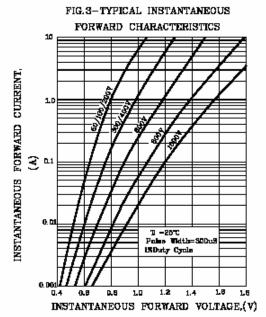
- Glass passivated chip junction
- Low power loss, high efficiency
- Low Leakage
- · High speed switching
- High Surge Capacity
- High Temperature soldering guaranteed: 260 °C / 10 second, 0.375" (9.5mm) lead length

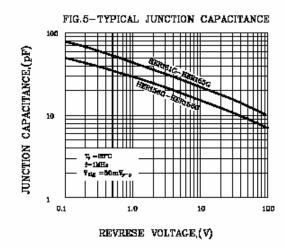
MECHANICAL DATA

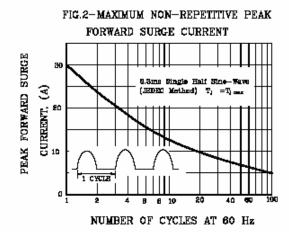
- Case: Transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant
- Polarity: Color Band denotes cathode end
- Lead: Plated axial lead, solderable per MIL STD-202E method 208C
- Mounting Position: Any
- Weight: 0.014 ounce, 0.39 gram

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS


- Ratings at 25°C ambient temperature unless otherwise specified
- Single Phase, half wave, 60Hz, resistive or inductive load
- For capacitive load derate current by 20%


	SYMBOLS	HER 151G	HER 152G	HER 153G	HER 154G	HER 155G	HER 156G	HER 157G	HER 158G	UNIT
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	50	100	200	300	400	600	800	1000	Volts
Maximum RMS Voltage	V_{RMS}	35	70	140	210	280	420	560	700	Volts
Maximum DC Blocking Voltage	V_{DC}	50	100	200	300	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 50^{\circ}$ C	I _(AV)	1.5								Amps
Peak Forward Surge Current										
8.3mS single half sine wave superimposed on	I_{FSM}	30							Amps	
rated load (JEDEC method)										
Maximum Instantaneous Forward Voltage @ 1.5A	$V_{\rm F}$	1.0			1.3		1.5	1.7		Volts
Maximum DC Reverse Current at Rated $T_A = 25$ °C	т	5.0								μА
DC Blocking Voltage per element $T_A = 125$ °C	I_R 250									
Maximum Full Load Reverse Current, Full Cycle average 0.375 ° (9.5mm) lead length at $T_L = 55$ °C	$I_{R(AV)}$	100							μΑ	
Maximum Reverse Recovery Time Test conditions $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$	t_{rr}	50 70						nS		
Typical Junction Capacitance (Measured at 1.0MHz and applied reverse voltage of 4.0V)	C_{J}	30 20						pF		
Typical Thermal Resistance (Note 1)	$R_{\theta JA}$	40							^o C/W	
Operating Junction Temperature Range	T_{J}	(-55 to +150)							°C	
Storage Temperature Range	T_{STG}	(-55 to +150)								^o C


Notes:


1. Thermal resistance from junction to ambient with 0.375" (9.5mm) lead length, PCB mounted

RATINGS AND CHARACTERISTIC CURVES HER151G THRU HER158G

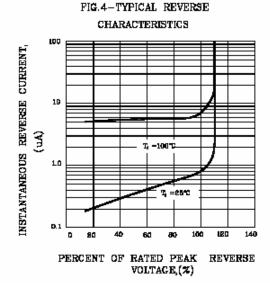
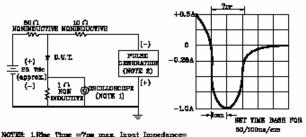



FIG.8-TEST CIRCUIT DIAGRAM AND
REVERSE RECOVERY TIME CHARACTERISTIC

NOTES: 1.Pine Vime =7mm max. Input Impedance= 1 magphm. 22pF

2.Rise time-10ms max. Source impedence-