

HIGH EFFICIENCY GLASS PASSIVATED RECTIFIER

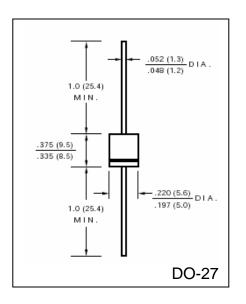
HER301G	THRU	HER308G	VOLTAGE RANGE	50 to 1000 Volts
			CURRENT	3.0 Ampere

FEATURES

- Glass passivated chip junction
- Low power loss, high efficiency
- Low Leakage
- High speed switching
- High Surge Capacity
- High Temperature soldering guaranteed: 260 °C / 10 second, 0.375" (9.5mm) lead length

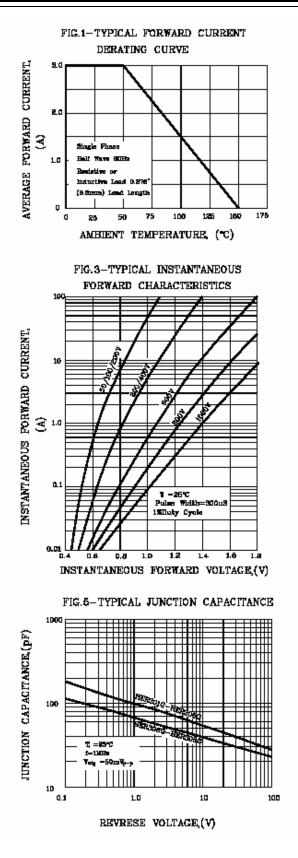
MECHANICAL DATA

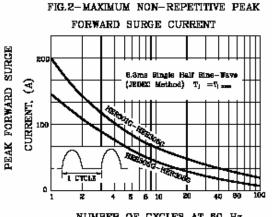
- Case: Transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant
- Polarity: Color Band denotes cathode end
- Lead: Plated axial lead, solderable per MIL STD-202E Method 208C
- Mounting Position: Any
- Weight: 0.042 ounce, 1.19 gram

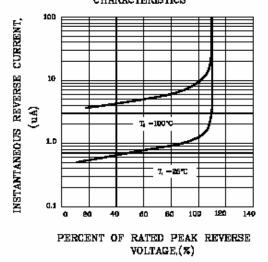

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

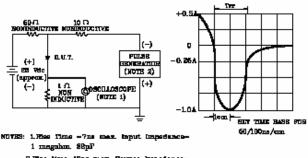
- Ratings at 25°C ambient temperature unless otherwise specified
- Single Phase, half wave, 60Hz, resistive or inductive load
- For capacitive load derate current by 20%

	SYMBOLS	HER 301G		HER 303G				HER 307G	HER 308G	UNIT
Maximum Repetitive Peak Reverse Voltage	V _{RRM}	50	100	200	300	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	210	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	300	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 50^{\circ}C$	I _(AV)	3.0							Amps	
Peak Forward Surge Current										
8.3mS single half sine wave superimposed on	I _{FSM}	200					150			Amps
rated load (JEDEC method)										
Maximum Instantaneous Forward Voltage @ 3.0A	$V_{\rm F}$	1.0			1.3 1.:		1.5	5 1.7		Volts
Maximum DC Reverse Current at Rated $T_A = 25 \ ^{\circ}C$	T	10								μΑ
DC Blocking Voltage per element $T_A = 125 ^{O}\text{C}$	I _R	500								
Maximum Full Load Reverse Current, Full Cycle average 0.375° (9.5mm) lead length at $T_{L} = 55^{\circ}C$	I _{R(AV)}	150							μΑ	
Maximum Reverse Recovery Time Test conditions $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$	t _{rr}	50 70							0	nS
Typical Junction Capacitance (Measured at 1.0MHz and applied reverse voltage of 4.0V)	C _J	70 50						0	pF	
Typical Thermal Resistance (Note 1)	$R_{\theta JA}$	20								^o C/W
Operating Junction Temperature	TJ	(-55 to +150)								°C
Storage Temperature Rang	T _{STG}	(-55 to +150)							°C	


Notes:


1. Thermal resistance from junction to ambient with 0.375" (9.5mm) lead length, PCB mounted


RATINGS AND CHARACTERISTIC CURVES HER301G THRU HER308G



NUMBER OF CYCLES AT 50 Hz

FIG.4-TYPICAL REVERSE CHARACTERISTICS

FIG.5-TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC

2. Res time-10ns max. Source impedance-50 chms