

HIGH EFFICIENCY RECTIFIER

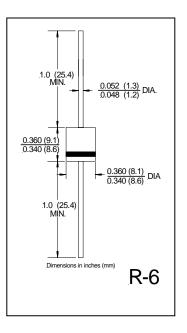
HFR601	TUDII	HER608	VOLTAGE RANGE	50 to 1000 Volts		
HER601	ΙΠΚΟ		CURRENT	6.0 Ampere		

FEATURES

- Low power loss, high efficiency
- Low Leakage
- High speed switching
- High Surge Capacity
- High Temperature soldering guaranteed: 260 °C / 10 second, 0.375" (9.5mm) lead length

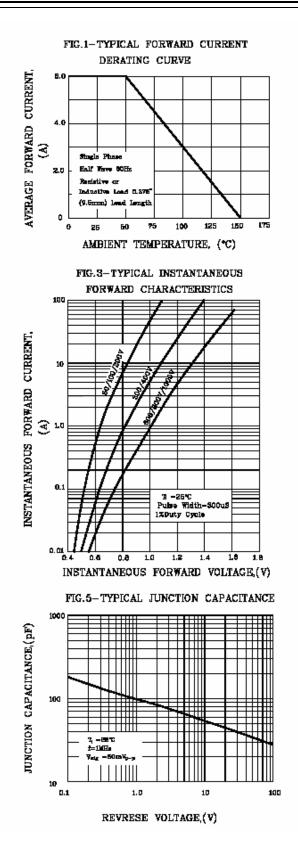
MECHANICAL DATA

- Case: Transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant
- Polarity: Color Band denotes cathode end
- Lead: Plated axial lead, solderable per MIL STD-202E Method 208C
- Mounting Position: Any
- Weight: 0.07ounce, 2.0 gram


MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

- Ratings at 25°C ambient temperature unless otherwise specified
- Single Phase, half wave, 60Hz, resistive or inductive load
- For capacitive load derate current by 20%

	SYMBOLS	HER 601	HER 602	HER 603	HER 604	HER 605	HER 606	HER 607	HER 608	UNIT
Maximum Repetitive Peak Reverse Voltage	V _{RRM}	50	100	200	300	400	600	800	1000	Volts
Maximum RMS Voltage	V _{RMS}	35	70	140	210	280	420	560	700	Volts
Maximum DC Blocking Voltage	V _{DC}	50	100	200	300	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 50^{\circ}C$	I _(AV)	6.0								Amps
Peak Forward Surge Current 8.3mS single half sine wave superimposed on rated load (JEDEC method)	I _{FSM}	200 150						Amps		
Maximum Instantaneous Forward Voltage @6.0A	V _F	1.0 1.3		.3	1.5 1.7		Volts			
Maximum DC Reverse Current at Rated $T_A = 25 \ ^{o}C$ DC Blocking Voltage per element $T_A = 125 \ ^{o}C$	I _R	10 500								μΑ
Maximum Full Load Reverse Current, Full Cycle average 0.375 " (9.5mm) lead length at T _L = 55 ^o C	I _{R(AV)}	150							μΑ	
Maximum Reverse Recovery Time Test conditions $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$	t _{rr}	50 70						nS		
Typical Junction Capacitance (Measured at 1.0MHz and applied reverse voltage of 4.0V)	C _J	110								pF
Typical Thermal Resistance (Note 1)	$R_{\theta JA}$	20								^o C/W
Operating Junction Temperature	TJ	(-55 to +150)								°C
Storage Temperature Rang	T _{STG}	(-55 to +150)								°C


Notes:

1. Thermal resistance from junction to ambient with 0.375" (9.5mm) lead length, PCB mounted

RATINGS AND CHARACTERISTIC CURVES HER601 THRU HER608

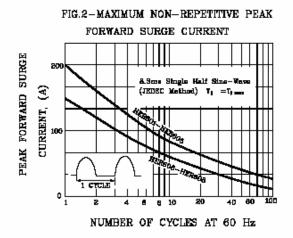
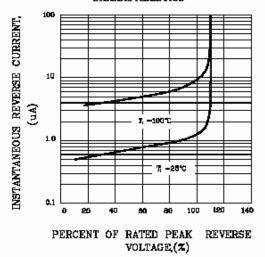
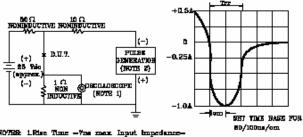




FIG.4-TYPICAL REVERSE CHARACTERISTICS

FIG.6-TEST CIRCUIT DIAGRAM AND REVERSE RECOVERY TIME CHARACTERISTIC

107522 LHue Time -724 max input impedance 1 megohin 22pF 2.Riss time=15ns max. Source Impedance

2. Kine time=10ne max. Source Impedar 80 ahme