

HIGH EFFICIENCY GLASS PASSIVATED RECTIFIER

HER601G THRU HER608G

VOLTAGE RANGE CURRENT 50 to 1000 Volts 6.0 Ampere

FEATURES

- Glass passivated chip junction
- Low power loss, high efficiency
- Low Leakage
- High speed switching
- High Surge Capacity
- High Temperature soldering guaranteed: 260 °C / 10 second, 0.375" (9.5mm) lead length

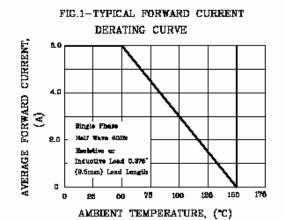
MECHANICAL DATA

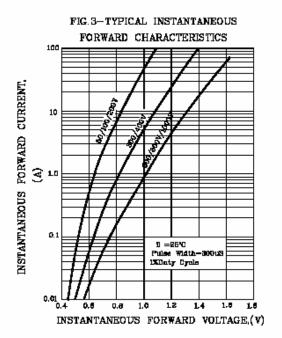
- Case: Transfer molded plastic
- Epoxy: UL94V 0 rate flame retardant
- Polarity: Color Band denotes cathode end
- Lead: Plated axial lead, solderable per MIL STD-202E Method 208C
- Mounting Position: AnyWeight: 0.07 ounce, 2.0 gram

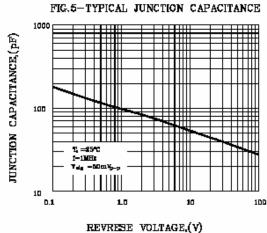
1.0 (25.4) MIN. 0.052 (1.3) 0.048 (1.2) DIA. 0.360 (8.1) 0.340 (8.6) DIA 1.0 (25.4) MIN. Dimensions in inches (mm)

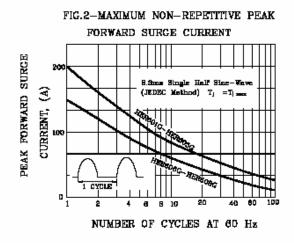
MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

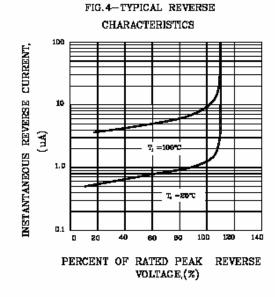
- Ratings at 25°C ambient temperature unless otherwise specified
- Single Phase, half wave, 60Hz, resistive or inductive load
- For capacitive load derate current by 20%

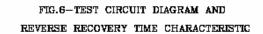

	SYMBOLS	HER 601G	HER 602G		HER 604G	HER 605G	HER 606G	HER 607G	HER 608G	UNIT
Maximum Repetitive Peak Reverse Voltage	V_{RRM}	50	100	200	300	400	600	800	1000	Volts
Maximum RMS Voltage	V_{RMS}	35	70	140	210	280	420	560	700	Volts
Maximum DC Blocking Voltage	V_{DC}	50	100	200	300	400	600	800	1000	Volts
Maximum Average Forward Rectified Current, 0.375" (9.5mm) lead length at $T_A = 50^{\circ}$ C	I _(AV)	6.0								Amps
Peak Forward Surge Current										
8.3mS single half sine wave superimposed on	I_{FSM}		200					150		Amps
rated load (JEDEC method)										
Maximum Instantaneous Forward Voltage @6.0A	V_{F}	1.0 1.3			.3	1.5	1.7		Volts	
Maximum DC Reverse Current at Rated $T_A = 25$ °C	_	10								4
DC Blocking Voltage per element $T_A = 125$ °C	I_R	500								μΑ
Maximum Full Load Reverse Current, Full Cycle average 0.375 " (9.5mm) lead length at $T_L = 55$ °C	$I_{R(AV)}$	150								μΑ
Maximum Reverse Recovery Time Test conditions $I_F = 0.5A$, $I_R = 1.0A$, $I_{RR} = 0.25A$	t_{rr}	50				70		nS		
Typical Junction Capacitance (Measured at 1.0MHz and applied reverse voltage of 4.0V)	C_{J}		110							
Typical Thermal Resistance (Note 1)	$R_{\theta JA}$	20							^o C/W	
Operating Junction Temperature	T_J		(-55 to +150)							^o C
Storage Temperature Rang	T_{STG}	(-55 to +150)								^o C

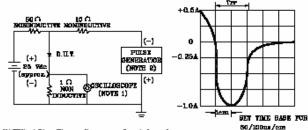

Notes:


1. Thermal resistance from junction to ambient with 0.375" (9.5mm) lead length, PCB mounted




RATINGS AND CHARACTERISTIC CURVES HER601G THRU HER608G





NOTES: 1.Rise Time -7ns max. Input Impedance-1 mesohm, 22pF Z.Rise time-10ns mex. Source Impedance-