

DUAL SURFACE MOUNT SWITCHING DIODE

BAV99 VOLTAGE RANGE 75 Volts CURRENT 300 mAmps

FEATURES

• High speed switching

• Guard ring construction for transient protection

Low reverse leakage

 High Temperature soldering guaranteed: 260 °C / 10 second, 0.375" (9.5mm) lead length

MECHANICAL DATA

• Case: SOT-23 molded plastic

• Lead: Terminal, solderable per MIL-STD-202

Method 208

Polarity: see pin out belowWeight: 0.0045 ounce, 0.008gram

.016 (0.4) Top View .016 (0.4) Top View .037 (0.95) .037 (0.95) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .016 (0.4) .005 (0.175) .005 (0.125) .007 (0.175) .005 (0.125) .0094 (2.4) .0094 (2.4) .0094 (2.4)

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25°C ambient temperature unless otherwise specified

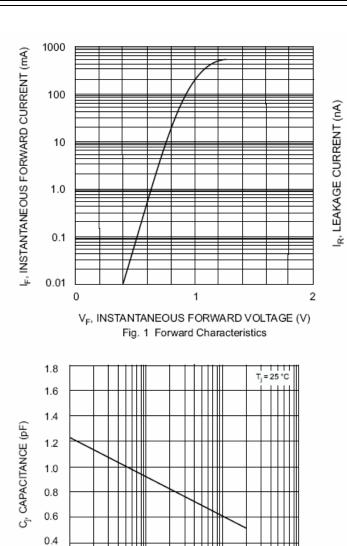
	SYMBOLS		UNIT
Maximum Repetitive Peak Reverse Voltage	V _{RRM}	75	Volts
Forward Continuous Current (Note 1)	I_F	300	mA
Non-repetitive Peak Forward Surge Current@ $T_P \le 1.0 \mu Sec$ $T_P \le 1.0 \mu Sec$	I_{FSM}	2.0 1.0	Amps
Maximum Forward Voltage @ 1.0mA 10mA 50mA 150mA	V_{F}	0.715 0.0855 1.0 1.25	Volts
Maximum Leakage Current, (Note 1) @ $V_R = 75V$ $V_R = 75V$, $T_J = 150^{O}C$ $V_R = 25V$, $T_J = 150^{O}C$	I_R	2.5 50 30	μА
Maximum Reverse Recovery Time $I_F = 10\text{mA}, I_R = 10\text{mA}, I_{RR} = 1\text{mA}, R_L = 100\Omega$	t _{rr}	4	nS
Power dissipation (Note 1)	P _{TOT}	200	mW
Typical Junction Capacitance , $V_F = 1V$, $f = 1MHz$	C_{J}	2	pF
Typical Thermal Resistance	$R_{ heta JA}$	355	^O C/W
Operating Junction Temperature Range	T_{J}	(-55 to +125)	°C
Storage Temperature Range	T_{STG}	(-55 to +150)	°C

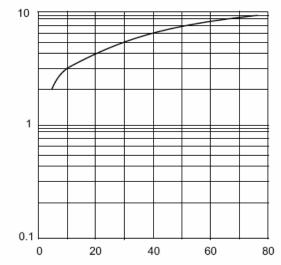
Notes:

1. Valid provided leads kept at ambient temperature

0.2

0 L 0.1


1.0


10

 $\label{eq:VR} {\rm V_{R,}} \, {\rm REVERSE} \, {\rm VOLTAGE} \, ({\rm V})$ Fig. 3 Typical Junction Capacitance vs Reverse Voltage

100

RATINGS AND CHARACTERISTIC CURVES BAV99

 $\label{eq:VR} {\sf V_R}, {\sf REVERSE\ VOLTAGE\ (V)}$ Fig. 2 Typical Leakage Current vs Reverse Voltage